Swimming Energy Calculator

OttrLoggr: Energy Use Calculator

Swim Energy Usage

Distance
Time
:
RER
Stroke

RER Value Guide

Slow (0.7)
A1 band - warm-up, recovery, cool-down sets
Moderate (0.85)
A2 band - aerobic capacity sets
Intense (1.00)
A3 band - aerobic power, VO2max sets

Data Source: Zamparo P, Bonifazi M (2013). Bioenergetics of cycling sports activities in water.

Coded for Swimming Science by Cameron Yick

Freestyle data

Velocity
/s
Cost
kj/
Total Cost
kj
Calories
kcal
Carbs
g
Fat
g

Quick Food Reference

Bagel
48g Carbs
Apple
25g Carbs
Peanut Butter
16g (2 tablespoons) *

Eating Disorders in Swimmers

Take home points

  1. Disordered eating is a common problem in swimming and other aquatic sports
  2. The issue is complex going beyond nutrition
  3. Awareness by coaches is key to providing the right guidance to athletes and directing them to appropriate professionals
It’s no secret that food is tightly woven into the swimming culture. From pre-meet carbo load sessions to post-practice gorges to some swimmers wanting to cut weight, it’s almost impossible to avoid the presence of food in swimming rituals. But a less talked about, and often taboo subject in the swim community, is the presence of eating disorders in swimmers. This is hardly a new topic, but recent research deserves review in this context. Further, many coaches, athletes, and parents are simply unaware of the problem while others retain a balance of ignorance and denial.

Swimming, by its nature, carries a higher risk of athletes developing eating disorders. “Athletes in leanness-demanding sports have an increased risk for RED-S and for developing EDs/DE. Special risk factors in aquatic sports related to weight and body composition management include the wearing of skimpy and tight-fitting bathing suits.” (Melin 2014) Though many swimmers are proud to showcase their sculpted bodies with minimal clothing, the constant display has a psychological cost for many, particularly females.

This psychological cost often drives eating disorders, often considered a taboo subject. Because eating disorders are more than a food issue, coach and athlete communication are key. Yet this is often an issue with gender overtones, and many male coaches are unable to communicate effectively with young female athletes, no matter their best intentions. (see Female Coaching Opportunities in Swimming) In one recent study in high school sports (not only swimming), “Significant differences were found between male and female coaches in certain attitudes and communication behaviors related to eating and menstrual irregularity. (Kroshus 2014)

However, misunderstanding is not restricted to gender, as “Coaches knowledge [of the Female Athlete Triad] was limited; however, most (9/10) were comfortable discussing menstruation with their athletes. Barriers to Triad screening/education were coaches' insufficient time, knowledge, and educational resources.” (Brown 2014)



Yet the reasons for eating disorders are varied, ranging from non-athletic (aesthetic, body image) to a desire for better athletic performance. “Individual changes in the desire to be leaner to improve sports performance were associated with individual changes in disordered eating. Furthermore….a desire to be leaner to improve sports performance was predictive of disordered eating and not vice versa. The results of our study indicate that athletes are more at risk for disordered eating if they believe it is possible to enhance their sports performance through weight regulation." (Krentz 2013)

Though eating disorders can spiral into physical and psychological depths, physical performance can be negatively impacted at the early stages. “[Disordered eating]-positive compared with DE-negative athletes presented a higher percentage of body fat and fat mass, lower protein consumption in the 11- to 14-y-old group, and lower calcium intake adequacy in the 15- to 19-y-old group. Greater attention should be given to the nutritional state of these athletes, considering the number of adolescents with anemia and an inadequate dietary intake.” (Da Costa 2013)

Conclusion

Like many issues outside the pool, awareness is most important. While coaches and parents may lack certain expertise to intervene if problems reach clinical levels, everyone has the expertise to create the right environment to prevent problems. Though swimmers are often known to eat with impunity to refuel from 4+ hours of practice a day, a dark underside of eating disorders exists among a subset of athletes, particularly females. Awareness is the first key step to ensuring swimmers are healthy both mentally and physically to thrive in the pool.

References:

  1. Krentz EM1, Warschburger P. A longitudinal investigation of sports-related risk factors for disordered eating in aesthetic sports. Scand J Med Sci Sports. 2013 Jun;23(3):303-10. doi: 10.1111/j.1600-0838.2011.01380.x. Epub 2011 Aug 18.
  2. Melin A1, Torstveit MK, Burke L, Marks S, Sundgot-Borgen J. Disordered eating and eating disorders in aquatic sports. Int J Sport Nutr Exerc Metab. 2014 Aug;24(4):450-9. doi: 10.1123/ijsnem.2014-0029. Epub 2014 Mar 25.
  3. Brown KN1, Wengreen HJ2, Beals KA3. Knowledge of the female athlete Triad, and prevalence of Triad risk factors among female high school athletes and their coaches. J Pediatr Adolesc gynecol. 2014 Oct;27(5):278-82. doi: 10.1016/j.jpag.2013.11.014. Epub 2014 Jul 9.
  4. Kroshus E1, Sherman RT, Thompson RA, Sossin K, Austin SB. Gender differences in high school coaches' knowledge, attitudes, and communication about the female athlete triad. Eat Disord. 2014;22(3):193-208. doi: 10.1080/10640266.2013.874827. Epub 2014 Jan 23.
  5. da Costa NF1, Schtscherbyna A, Soares EA, Ribeiro BG. Disordered eating among adolescent female swimmers: dietary, biochemical, and body composition factors. Nutrition. 2013 Jan;29(1):172-7. doi: 10.1016/j.nut.2012.06.007. Epub 2012 Sep 28.
Written by Allan Phillips is a certified strength and conditioning specialist (CSCS) and owner of Pike Athletics. He is also an ASCA Level II coach and USA Triathlon coach. Allan is a co-author of the Troubleshooting System and was selected by Dr. Mullen as an assistant editor of the Swimming Science Research Review. He is currently pursuing a Doctorate in Physical Therapy at US Army-Baylor University.

Drafting During Swimming

Take Home Points
  1. Little study exists on the effect of drafting in pool swimming.
  2. Drafting may affect RPE at similar paces, potentially affecting confidence when drafting is removed.
  3. Effects of a draft may affect workouts even with two swimmers splitting a lane rather than a larger group circling.
Swimmers universally have negative thoughts about drafting. Many swimmers are annoyed by drafters and coaches can be frustrated when swimmers aim for a free ride in the pool. While drafting is an essential skill in open water and triathlon, it is seen as poor form during a swim workout.

Despite the universal dislike for pool drafters, there has been little formal study on the effects of pool drafting as typically practiced in workouts, in part because we all have our own lanes during races. In other words, the literature is sparse on the difference between leaving 2-3 seconds after the lead swimmer as opposed to the more typical 5-10 seconds. That said, it still may be helpful to view the literature on drafting with swimmers following more closely.

Not surprisingly, following directly behind a lead swimmer can have significant effects on speed. Chatard (2003) studied swimmers drafting directly behind at 0, 50, 100, and 150 cm and at lateral distances separated by approximately 40 cm, and in two positions at the rear of the lead swimmer with a reduced lateral distance between swimmers of 50 and 0 cm." Authors noted "the most advantageous drafting distances were 0 and 50 cm back from the toes of the lead swimmer. Drag was reduced by 21% and 20%, respectively. In lateral drafting, "drag was significantly reduced by 6% and 7%, respectively, at 50 and 100 cm back from the hands of the lead swimmer."

As for physiology, "Oxygen uptake, heart rate, blood lactate, rating of perceived exertion, and stroke
rate were significantly reduced and stroke length was significantly increased in all drafting positions. Jannsen (2009) found similar results: “The best position for a draft swimmer was found to be directly behind an active lead swimmer at a distance of 0.50 m between the toes of lead swimmer and the hands of drafter, with significant reductions in both passive drag and oxygen uptake when drafting.”

The effects on stroke parameters and physiology were explored additionally by Chollet (2000) who found "lactate concentrations were lower in drafting while the stroking parameters (i.e., stroke length and stroke index) increased significantly, and the stroke frequency remain unchanged. In drafting, a stable pace was maintained, while in nondrafting, velocity decreased significantly throughout the 400 m."

Some may theorize that drafting behind swimmers with a bigger kick or during sprint sets may present different results than drafting behind a smoother swimmer. Millet (2000) found no difference between drafting behind swimmers with a two beat kick versus those with a six beat kick in a study of elite triathletes. In a separate study involving elite triathletes, Chatard (1998) found that lower skinfold was correlated with greater improvements from drafting conditions, though all swimmers regardless of skinfold improved significantly from a draft.

Conclusion

You could make the argument that an “assist” late in a workout may be beneficial, much like a spotter giving a small assist to a weightlifter at the end of a set. Rather than blowing up and missing an interval, a small draft could help the swimmer leave the pool with confidence rather than feeling defeated. That doesn’t condone all drafting, but it may be a possible justification for those thinking outside the box.

Ultimately, we have more questions than answers for quantifying the draft as is typically seen in pool workouts, though we clearly know that a draft is helpful for faster swimming and gains are also possible through lateral drafting. Future research can examine the effect of lateral drafting in separate lanes during race conditions, as this is often theorized to have an effect in pool competition.

References
  1. Chatard JC1, Wilson B. Drafting distance in swimming. Med Sci Sports Exerc. 2003 Jul;35(7):1176-81.
  2. Chollet D1, Hue O, Auclair F, Millet G, Chatard JC. The effects of drafting on stroking variations during swimming in elite male triathletes. Eur J Appl Physiol. 2000 Aug;82(5-6):413-7.
  3. Millet G1, Chollet D, Chatard JC.Eur J Appl Physiol. Effects of drafting behind a two- or a six-beat kick swimmer in elite female triathletes.2000 Aug;82(5-6):465-71.
  4. Chatard JC1, Chollet D, Millet G.Med Sci Sports Exerc. Performance and drag during drafting swimming in highly trained triathletes.1998 Aug;30(8):1276-80.
Written by Allan Phillips is a certified strength and conditioning specialist (CSCS) and owner of Pike Athletics. He is also an ASCA Level II coach and USA Triathlon coach. Allan is a co-author of the Troubleshooting System and was selected by Dr. Mullen as an assistant editor of the Swimming Science Research Review. He is currently pursuing a Doctorate in Physical Therapy at US Army-Baylor University.

A Swimmer's Guide to Pain

Take Home Points:
  1. How coaches talk to athletes about injuries may have an impact on return-to-sport timelines
  2. Coaches and parents should have a basic understanding of pain science to best communicate with swimmers
  3. Fear of movement can be crippling setting off a vicious cycle of pain and disability
  • I have a vertebra out of place
  • My back is out of alignment
  • My knees are bone-on-bone so I can’t do breaststroke
All of the above are common ways to describe typical injuries around the pool. And while there are often grains of truth in such statements, a narrow focus on the structural elements of injury inevitably ignores the psychosocial components in pain. This is one area where coaches and parents can play a key role in talking to injured swimmers and reinforcing what contemporary medical professionals understand about pain science.

Now, the purpose of this is not to dismiss the role of structure in causing pain. In fact, the extreme statement of “pain is all in your brain” is equally counterproductive to injury healing in athletes. Yes, certain pathologies are likely to induce pain, particularly when lesions occur in particular nervous system structures. However, what is unfortunate is that a misunderstanding of pain can thwart even the most carefully planned treatment and exercise regime.

Quite simply, the feeling of pain is driven by the body’s perception of threat. We know that
perception is key, not merely structural damage, as many studies have shown that pain-free subjects can have structural damage in similar rates to painful subjects, particularly for repetitive use conditions (trauma is a different story…). We have discussed this point previously in several posts including for:
Recently, Finan (2013) compared knee osteoarthritis patients classified into “high” and “low” severity. Somewhat surprisingly, those with high severity damage experienced less pain than those with low severity damage, as those with less damage were actually found to have more pain! There are several reasons why this may be the case, but the take home point is that damage is not automatically linked to pain. As such, coaches and parents must not mislead swimmers with a narrow focus on the injury and instead shift the focus to more productive areas such as function, mobility, and progression.

So why do some swimmers feel pain and others don’t, despite similar structural makeup (damage or lack of damage)? One explanation is that everyone has different sensitivities. Each swimmer’s sensitivity is driven by a myriad of factors such as previous injury, personality, training load, stroke biomechanics, among other factors. As pain scientist David Butler wrote to one patient suffering shin splints,

“Even a few years after an injury the brain holds memories of serious injuries and can react over time – almost trying to heal it again so it puts in a bit of useful swelling there which can irritate things. It gets a bit compounded when treatments don’t work or make sense and you start to worry - worry can make can make things more sensitive too. But this is all good – it will go.”

Conclusion

Many swimmers (and patients in general) are more comfortable with discrete explanations of structure. Unfortunately, a misunderstanding of the psychosocial elements of pain can often prolong the rehabilitation process as swimmers, coaches, and parents obsess about the structural elements of injury with laser focus! This commonly results in perpetuation of injury, creating a vicious cycle in which the swimmer is unable to successfully progress through rehab, despite best practices being employed via treatment and exercise. Ultimately, a proper understanding of pain can help guide swimmers back to function if injury strikes.

If you are looking for more information on pain and injury at the shoulder, consider purchasing the Swimmer's Shoulder System.

References
  1. Finan PH1, Buenaver LF, Bounds SC, Hussain S, Park RJ, Haque UJ, Campbell CM, Haythornthwaite JA, Edwards RR, Smith MT Discordance between pain and radiographic severity in knee osteoarthritis: findings from quantitative sensory testing of central sensitization. Arthritis Rheum. 2013 Feb;65(2):363-72. doi: 10.1002/art.34646.
Written by Allan Phillips is a certified strength and conditioning specialist (CSCS) and owner of Pike Athletics. He is also an ASCA Level II coach and USA Triathlon coach. Allan is a co-author of the Troubleshooting System and was selected by Dr. Mullen as an assistant editor of the Swimming Science Research Review. He is currently pursuing a Doctorate in Physical Therapy at US Army-Baylor University.

Is "Swim Specific" Dryland Really "Swim Specific"?

Take Home Points
  1. Many dryland methods touted as swim specific really are not swim specific
  2. Mimicking the swim stroke on land may contribute to overtraining, motor confusion
  3. Dryland can be used to teach basic movement patterns (especially at the individual level), but consider the doses in which it is delivered
Swim specificity is a common justification for many dryland activities. And it makes sense that we might use gym time to impart techniques that may be difficult to teach in the middle of a crowded pool with no ability to verbally coach instructions. This is not unique to swimming, as many coaches try to replicate sporting demands in the gym away from the sometimes chaotic environment of the competitive arena. But is this really a “best practice,” especially at advanced levels?

Swim specificity takes many forms from bands, swim bench, balls, and even improvised contraptions such as the one shown below.

Let’s explore this closely as an example. Now, there may be some elements of this exercise which are “swim specific”: long axis alignment, early vertical forearm, body rotation. However, these elements are mitigated by non-swim specific elements such as fixed dorsiflexed ankles, no head rotation for breathing, and the fact that you are on land.

There may be benefits from using dryland to teach parts of the stroke such as early vertical forearm, pointed ankles, hip internal rotation, as self-awareness can be a major hurdle in the early stages of skill acquisition. But once a swimmer is proficient, does performing mimicry exercises actually aid the stroke in the water?

Bearing a resemblance to the stroke is insufficient justification for mimicry. For example, many coaches attempt to mimic early vertical forearm on land, as it is a difficult skill to communicate in the water for many swimmers. Early vertical forearm is not just early vertical forearm…how each individual’s forearm moves is often predicated upon imperceptible microadjustments. Forcing the shoulders into high repetitions of exercise stressing the shoulders can cause problems, especially with injury risks so high in the sport.

"A lot of emphasis is put on “sport-specific” movements (swim bench, cable crossovers, straight arm pulldowns, etc.). Unfortunately, the transference of these movements is uncertain and likely minimal to the sports of swimming. Every land exercise you create is far from the demands in the pool. Despite visual similarities, every swimmer uses unique yet imperceptible microadjustments in their strokes to optimize balance, force, and deceleration. It is impossible to replicate these movements on land and attempting to be too “sport specific” may lead to confused motor programming." (Mullen 2012)

“The intent is not to produce mimicry of sport during training. Of utmost importance during training is that key dysfunctions are improved. The goal of training is not to teach perfect patterns, but to correct the key fault that is causing trouble.” As to the key fault in swimmers, this may be shoulder range of motion, scapular stability, asymmetries, or pain, among other general physical traits that can be addressed on land. (Lewitt 1999, Liebenson 2014)

Further, is “swim specific” dryland the best use of time? Many choices exist on how to spend dryland time, from general strengthening, recovery, mental practice, plyometrics for starts/turns. With sometimes more than 20 hours in the water, is a few minutes of land based swim mimicry going to create meaningful improvements (if so, I’d suggest you analyze room for improvement in the 20 hours spent in the water.)

A related point is with unstable surface training, which is often presented as “swim specific.” But as noted by Behm (2012)

"Some of the characteristics of IRT exercises that are not conducive to optimal strength or power training for athletes, may be favorable for rehabilitation. The instability‐induced deficits in force compared to traditional stable RT exercises, which dampen the strength training stimuli in trained individuals, can be of sufficient intensity for a recuperating muscle." (Behm 2012)

Conclusion

This is ultimately one area where reasoning and common sense must prevail as classifying “swim specific” versus general would be difficulty for research as a qualitative classification. Also, because there are a finite number of possible movement patterns, there will always be cross over between “swim specific” and general exercises. It is one thing to troubleshoot a particular stroke deficit that you believe is better addressed on land, but it is quite another to fill your dryland workout exercise plate with exercises that merely look similar to swim mechanics.

References

  1. Mullen, J. Five Considerations When Training Swimmers.
  2. David Behm, PhD1 and Juan Carlos Colado, PhD THE EFFECTIVENESS OF RESISTANCE TRAINING USING UNSTABLE SURFACES AND DEVICES FOR REHABILITATION. Int J Sports Phys Ther. Apr 2012; 7(2): 226–241.
  3. Lewitt, K. Manipulative Therapy in Rehabilitation of the Locomotor System. 3ed. Oxford: Butterworth Heinemann, 1999.
  4. Liebenson, C. Functional Training Handbook. Philadelphia: Wolters Kluwer, 2014. 

Written by Allan Phillips is a certified strength and conditioning specialist (CSCS) and owner of Pike Athletics. He is also an ASCA Level II coach and USA Triathlon coach. Allan is a co-author of the Troubleshooting System and was selected by Dr. Mullen as an assistant editor of the Swimming Science Research Review. He is currently pursuing a Doctorate in Physical Therapy at US Army-Baylor University.

Training Paralympic Swimmers, Part II

Take Home Points on Training Paralympic Swimmers, Part II
  1. Asymmetry is related to disability classification in Paralympic swimmers
  2. Level of disability appears related to impairment of start velocity
  3. Dryland may improve Paralympic swim performance, but the same questions remain about dryland as with regular swimming
Paralympic swimming has grown enormously in stature during recent Olympic cycles. Once an afterthought compared to “regular” Olympic events, the Paralymipcs have attracted more high level athletes each year, with interest continuing to grow. While basic swimming principles remain uniform compared to able bodied swimmers, certain adjustments are required. 

We have previously reviewed literature on Paralympic swimming (Part I), but recently the team of Dingley et al (2014) published a series of studies on starts and dryland specific to Paralympic swimmers.

In the article on starts the team found:
  • Swimmers with no physical disability were significantly faster in most swim-start phases compared with those with physical disabilities 
  • Swimmers with low-severity disabilities were also significantly faster in starts compared with the mid- and high-severity groups. (Note: this study includes only Paralympic swimmers but not all classifications are considered physical disabilities) 
  • Block velocity was highly negatively correlated with 15-mswimming time for all groups except high-severity disabilities. 
  • Free-swim velocity is a priority area for improving swim-starts for swimmers regardless of disability. 
  • Swimmers with lower body or high-severity disabilities spent a smaller percentage of time overall in the underwater phase. 
Overall, the trends are relatively similar than what we’d expect to find in able bodied swimmers, with block velocity relating to 15m swim time. Key take home from this research is confirming that physical ability is an individual quality and training should be individualized to each swimmer’s capability.

Asymmetry has been a recent topic on thissite. While asymmetry is a key element for able bodied swimmers, asymmetry has greater importance for Paralympic swimmers who may be missing limbs. In a study on force production among Paralympic swimmers, the same research team noted:

Large relationships between mean force and swimming velocity were seen for both the high and low-range groups. 

Asymmetry was related to level of disability, with the smallest difference of in the no-musculoskeletal disability group. This difference increased to in the high- and low-range groups.
Between the first and last 15 s of the swim-bench test, reductions in mean force were small for the physical disabilities groups. 

Changes in asymmetry were small for both the no-physical and low-range groups. Paralympic swimmers with a more severe physical impairment typically generate substantially lower force and velocity.

These results make intuitive sense, but it should be noted that data was collected on a swim bench, so transfer to the water is unclear. However, the same neural drive components may affect force production making the data somewhat instructive for organizing a training approach.

Finally, in a study on dryland by the same team, authors analyzed the effect of dryland on Paralympic swimmers. This definitely is not a perfect study (low sample size, no control group) but it does add information to a niche in where limited information exists. In this study, subjects performed a full body dryland routine. Results from seven elite Paralympic swimmers showed:
  1. 50-m time trials improved by 1.2% 
  2. Increases in both mean power (6.1%, ±5.9%) and acceleration (3.7%, ±3.7%) generated during the dive start enabled swimmers to substantially improve start times to the 5-m (5.5%, ±3.2) and 15-m (1.8%, ±1.1%) marks. 
Despite these results, similar questions remain about the relationship of dryland to swim performance (much too long a discussion to reengage in this post!).

Conclusion

Overall, nothing groundbreaking with this work, but remember that research is a long term process. As Paralympic swimming gains prominence, hopefully more research will emerge specific to disability categories, as each classification has its own unique demands. 

References

  1. Dingley A1, Pyne DB, Burkett B. Phases of the Swim-start in Paralympic Swimmers are Influenced by Severity and Type of Disability. J Appl Biomech. 2014 Oct;30(5):643-648. Epub 2014 Jul 9.
  2. Dingley AA1, Pyne D2, Burkett B3. Dry-land Bilateral Hand-force Production and Swimming Performance in Paralympic Swimmers. Int J Sports Med. 2014 Oct;35(11):949-53. doi: 10.1055/s-0033-1364023. Epub 2014 Jun 3.
  3. Dingley AA1, Pyne DB, Youngson J, Burkett B. Effectiveness of a dry-land resistance training program on strength, power andswimming performance in Paralympic swimmers. J Strength Cond Res. 2014 Sep 15. [Epub ahead of print]
Written by Allan Phillips is a certified strength and conditioning specialist (CSCS) and owner of Pike Athletics. He is also an ASCA Level II coach and USA Triathlon coach. Allan is a co-author of the Troubleshooting System and was selected by Dr. Mullen as an assistant editor of the Swimming Science Research Review. He is currently pursuing a Doctorate in Physical Therapy at US Army-Baylor University.

Kinesiotape for Swimmers: Length, Strength and Timing. Part II

Take Home Points on Kinesiotape and Swimmers:
  1. The evidence does not suggest that kinesiotape aids athletic performance
  2. Kinesiotape may affect knee mechanics and improve pain in those with patellorfemoral pain syndrome
  3. Kinesiotape has been shown to increase acromiohumeral distance, potentially limiting risk for shoulder impingement symptoms. 
This is not a new topic to this blog (See Part I). But like any topic, one snapshot of the evidence is never the final word. So is there anything new to report in the literature on kinesiotape, especially as it may relate to swimming?

Overall, the general consensus is that the performance effects of kinesiotape are negligible to non-existent. Fortunately though, there appear to be no detrimental effects on performance (minus the potential opportunity cost of forgoing other potentially more effective mechanisms). 

In a recent systematic review, Drouin (2013) noted, “There is scant evidence to support kinesiotaping techniques as a successful means of affecting athletic-based performance outcomes such as improved strength, proprioception and range of motion, in healthy persons.” This appears to be definitive statement on the effects of kinesiotaping, but does it end the discussion?


One problem is that in most studies, kinesiotape is applied randomly as opposed to particular subjects for whom kinesiotaping is theorized to work. While the latter approach may sacrifice objectivity for potential bias, the latter may be more reflective of how the intervention is applied in real life. Be careful of labeling any intervention as “good” or “bad” as a blanket statement. Instead, the follow up should be “good or bad for whom?” It is a mistake to justify kinesiotape for performance based of any supporting literature for injury/pain, just as it is mistaken to outright dismiss kinesiotape as a clinical adjunct based on a lack of evidence to support performance improvements. 

Swimmers often focus on taping for the shoulder, but don’t forget the possibilities in the lower extremities, particularly for dryland and breaststroke. Song (2014) recently found that kinesiotaping caused significant shifts in patellar positioning in females with patellofemoral pain syndrome compared to the application of sham tape or a no tape condition during a single leg squat. However, both the sham tape and kinesiotape were successful in pain reduction. 

One especially pertinent study for swimming (Luque-Suarez 2013) published after our previous blog post, examined whether kinesiotape affects acromiohumerdal distance in healthy subjects (a potential measure of shoulder impingement risk). Authors of this randomized controlled trial noted that although the kinesiotape group had significantly greater increases in acromiohumeral distance compared to the sham taping group, direction of taping did not matter.

Conclusion

Overall, little has changed in the evidence on kinesiotape, especially regarding the lack of support for its theorized improvement on performance. However, recent studies have opened relatively new lines of inquiry regarding potential improvements in knee and shoulder biomechanics, both of which may be helpful for swimming health and technique.

References

  1. Luque-Suarez A1, Navarro-Ledesma S, Petocz P, Hancock MJ, Hush J. Short term effects of kinesiotaping on acromiohumeral distance in asymptomatic subjects: a randomised controlled trial. Man Ther. 2013 Dec;18(6):573-7. doi: 10.1016/j.math.2013.06.002. Epub 2013 Jul 4.
  2. Song CY1, Huang HY1, Chen SC2, Lin JJ3, Chang AH4. Effects of femoral rotational taping on pain, lower extremity kinematics, and muscle activation in female patients with patellofemoral pain. J Sci Med Sport. 2014 Jul 24. pii: S1440-2440(14)00135-2. doi: 10.1016/j.jsams.2014.07.009. [Epub ahead of print]
  3. Drouin JL1, McAlpine CT, Primak KA, Kissel J. The effects of kinesiotape on athletic-based performance outcomes in healthy, active individuals: a literature synthesis. J Can Chiropr Assoc. 2013 Dec;57(4):356-65.
Written by Allan Phillips is a certified strength and conditioning specialist (CSCS) and owner of Pike Athletics. He is also an ASCA Level II coach and USA Triathlon coach. Allan is a co-author of the Troubleshooting System and was selected by Dr. Mullen as an assistant editor of the Swimming Science Research Review. He is currently pursuing a Doctorate in Physical Therapy at US Army-Baylor University.

Dealing with Anticipated Stress

Take Home Points on Dealing with Anticipated Stress
  1. How athletes deal with anticipated is often overlooked in communicating
  2. Elite performers show increased activity of the insular cortex to anticipate adverse events
  3. Psychology intersects with our understanding of the central governor hypothesis
We all know the feeling of an impending hard set, or on a bigger picture, a hard training block or even a Hell Week.  Anticipation of such an event may even trigger physiological responses: pangs of nervousness, sweating, and perhaps nausea.  Yet we also know that under stress, the best athletes simply cope better than lesser athletes?  What may differentiate the elite from the average?

"Individuals optimize exercise level as it relates to differences between expected and experienced exertion, which can be conceptualized as a body prediction error. The process of computing a body prediction error involves the insular cortex, which is important for interoception, i.e. the sense of the physiological condition of the body." (Paulus 2012)

Elite military operators have been shown to be more adept than control subjects in this realm.  Previous research has shown greater neural processing by Navy SEALs in response to threat stimuli via heightened right insular cortex activation.  (Paulus 2012) One interesting note from studies of elite military selection schools is how many candidates drop out of training in the first day.  Surely, the matter is not physical as training has hardly begun.  Not everyone has the physical and mental capability for elite performance in any genre, but it is enlightening to see the power of the mind in this area



In plain terms, this discussion simply means swimmers may psyche themselves out not from current distress but from anticipated future distress.  Interestingly, the general mechanisms may be similar to the proposed theories behind the central governor, which states that physical output reflects our brain’s perception of physical status.  ("During self-paced exercise, the exercise work rate is regulated by the brain based on the integration of numerous signals from various physiological systems. It has been proposed that the brain regulates the degree of muscle activation and thus exercise intensity specifically to prevent harmful physiological disturbances" (Tucker 2009))

Practical Implication
Now, certainly this information can be used to drive swimmers to push harder through discomfort.  There are many different strategies to cope with the discomfort of a hard effort.  But that’s not our main focus here.  Instead, what about the buildup to a hard effort? 

While functional MRIs to measure insular cortex activity are not readily available poolside, simple strategies may help many swimmers.  Ultimately, the key is for swimmers to have strategies to deal with anticipated stress   Everyone responds to different cues.  Some may respond best to an environment in which the enormity of a hard task is minimized.  Others may respond best to getting pumped up by coaches and teammates. 

Key point is to understand that particular physiological mechanisms underlie psychological strategies.  How we think in this realm will ultimately affect our physiology.  Coaches must create the right environment for athletes to choose the best strategies for themselves to handle future physical stress.

References

  1. Tucker R.  The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance.Br J Sports Med. 2009 Jun;43(6):392-400. doi: 10.1136/bjsm.2008.050799. Epub 2009 Feb 17.
  2. Paulus MP1, Simmons ANFitzpatrick SNPotterat EGVan Orden KFBauman JSwain JL.PLoS One. Differential brain activation to angry faces by elite warfighters: neural processing evidence for enhanced threatdetection.2010 Apr 14;5(4):e10096. doi: 10.1371/journal.pone.0010096.
  3. Paulus MP1, Flagan TSimmons ANGillis KKotturi SThom NJohnson DCVan Orden KFDavenport PWSwainJLSubjecting elite athletes to inspiratory breathing load reveals behavioral and neural signatures of optimalprformers in extreme environments. PLoS One. 2012;7(1):e29394. doi: 10.1371/journal.pone.0029394. Epub 2012 Jan 19.
Written by Allan Phillips is a certified strength and conditioning specialist (CSCS) and owner of Pike Athletics. He is also an ASCA Level II coach and USA Triathlon coach. Allan is a co-author of the Troubleshooting System and was selected by Dr. Mullen as an assistant editor of the Swimming Science Research Review. He is currently pursuing a Doctorate in Physical Therapy at US Army-Baylor University.

Should Coaches Change Asymmetries in Swimmers: Part III

Take Home Points on Should Coaches Change Asymmetries in Swimmers: Part III
  1. An appearance of asymmetry does not automatically imply asymmetry of function
  2. Asymmetrical strokes may be related to physical characteristics and physiological capacity
  3. Working with an asymmetrical stroke is a mix of science and art
In previous posts we have reviewed literature on swimming and asymmetries (Part I, Part II). This installment will integrate information recently published by Dr. Formosa, summarized in his interview. What seems like a simple issue can get very complex when we look at all the factors involved. Many kids have had their strokes changed simply because a coach did not like how the stroke looked. Now, I’m not suggesting that kids should be allowed to swim without correction, but rather that correction must rely on more than “it looks bad.” 

Before getting to the interview, recall from a prior post in this series that, "Despite attempts to impose ideal symmetry, a perfectly symmetrical stroke and body are both unrealistic. We all have favored brain hemispheres, eye, ear and limb preferences along with structural differences in how our organs sit within our bodies. Asymmetry may also follow us into the water. But there is still good reason to make swimmers “less asymmetrical” even perfect symmetry is a fiction."

Nearly every swimmer brings asymmetries to the water. This isn’t necessarily a bad thing; just something to be accounted for when dealing with technique. A key point from the literature is that we can’t fully determine functional symmetry without measuring force. Yet surely there are ways to estimate whether someone is symmetrical or not, which leads us to Dr. Formosa’s work. 

As Dr. Formosa summarized, 

"The front crawl and backstroke research papers highlight that although an athlete may present with a similar timing from hand entry to hand exit the force profile that they are producing through the water is variable. Therefore, it should not be assumed that if a swimmer presents with a symmetrical timing pattern their force profile is also symmetrical. 

Further, elite athletes that apply force in water based sports such as rowing and kayaking have the ability to subtly manipulate their stroke to optimise force production. The complexity of symmetry is evident with the findings that although athletes demonstrated symmetrical timing their net drag force values were asymmetrical." (Formosa 2011, 2012, 2013)

Practical Application

While better swimmers often deliver force symmetrically, HOW they accomplish via individual can vary greatly and requires a more critical thought process than simply how the swimmer looks. The practical implication here is that coaches must consider all the information. 

We have written previously about movement screening to learn more about swimmers’ individual qualities. Not everyone has access to high tech underwater force measurement devices, but knowing your swimmer’s physical baseline is valuable. Some swimmers move their arms asymmetrically in 2D video but ultimately produce power with symmetry. 

Breathing patterns are also key factors, as preferred breathing style may lead swimmers to gravitate toward an asymmetrical looking stroke. Prior injury may also lead swimmers to develop protective patterns around injury. Yet thanks to the amazing plasticity of the brain, talented athletes can learn to develop force symmetrically despite lasting mechanical limitations. The extent to which this actually happens has yet to be studied but is a possible line of inquiry for future research as the foundation of the current literature on asymmetries expands. 

References

  1. Formosa, D. P., Mason, B., & Burkett, B. (2011). The force-time profile of elite front crawl swimmers. Journal of Sports Sciences, 29 (8), 811-819.
  2. Formosa, D. P., Sayers, M., & Burkett, B (2012). Front-crawl stroke-coordination and symmetry: A comparison between timing and net drag force protocols. Journal of Sports Sciences, 31 (7), 759 – 66.
  3. Formosa, D. P., Sayers, M., & Burkett, B. Symmetry of elite backstroke swimmers utilising an instantaneous force profile. Journal of Sports Sciences, Accepted 5th July 2013.
Written by Allan Phillips is a certified strength and conditioning specialist (CSCS) and owner of Pike Athletics. He is also an ASCA Level II coach and USA Triathlon coach. Allan is a co-author of the Troubleshooting System and was selected by Dr. Mullen as an assistant editor of the Swimming Science Research Review. He is currently pursuing a Doctorate in Physical Therapy at US Army-Baylor University.

Programming the Plank for Swimming

Take Home Points Programming the Plank for Swimming
  1. Consider planking options such as the hardstyle plank and suspension trainer planks for shorter durations rather than endurance planks
  2. Planks are easy to teach, but hard to do well
  3. Hardstyle planking may transfer more effectively to lifting exercises than endurance planks
The plank is a common exercise used on the pool deck for dryland programs, for good reason. It requires minimal equipment and is fairly easy to instruct. In general, it is also relatively safe, though as we’ll discuss below, improper form and loading can cause problems. It’s not likely to make arms and legs sore for swimming, yet can give swimmers a good burn to give them buy-in for the program. Further, being an exercise based on straight body alignment, it can be seen as relatively swim specific (though this point is highly debatable and probably the weakest justification for including planks in a program).

Yet the traditional plank has several weaknesses. Though relatively easy to teach (Compared to something like Olympic lifts), it is easy for quality control to suffer, as backs can sag and necks can protrude. To this last point, it all depends on how you program the move. Traditional planking involves rounding up swimmers into a circle on the deck, giving a ready-set-go command and having everyone plank for a length of time while. As groaning increases, backs begin to sag, breathing technique suffers, overall exercise quality becomes scattershot. And with many different levels a group, the strongest go unchallenged while the weakest often lose form. 

Enter the Hardstyle Plank (often referred to as the RKC plank). Dr. John did a video on this for Swimming World, and this was also a key exercise in the lumbar spine section of the Swimming TroubleshootingSystem. As he explained previously,
  • Lie on your stomach, then prop yourself on your forearms and toes. 
  • Keep your spine long, by tucking your pelvis and tightening your core musculature. Also, keep your chin tucked to further enhance the streamlined position. 
  • Once this is accomplished, the athlete can begin tightening their glutes, then their thighs, then attempting to squeeze their thighs together, and lastly attempt pulling their arms down. 
  • These adaptations should be added slowly without compromising the streamlined position. 
  • Perform for approximately 20 seconds. 

Though not studied in peer reviewed literature, Bret Contreras (friend of the blog, see Bret Contreras interview) has conducted EMG studies showing the hardstyle plank for increasing muscle activation significantly for several muscles compared to traditional plank, with the hardstyle plank increased lower abdominal activation by approximately 4x. Again, this isn’t formal research, but Bret is an experienced EMG operator and these results do give insight into compare different strategies.


Also consider that not all increases in muscle activity are good, yet for the plank muscle activity is good as a way to teach full body tension without the distraction of hoisting a weight. Once this basic skill of tension is taught, then the focus can move to specific lifting technique (though it need not be a sequential process as you are always refining both). Further, control of the sagittal plane in the plank can help ease the transition into frontal and transverse plane movements in different plank variations. Progression is key and the hardstyle plank forms an effective foundation. 

Conclusion

In most dryland regimes, the traditional plank is a useful choice of exercise but quality control is essential. The hardstyle plank done intensely for 10-20 seconds is one means of quality control for a dryland regime that simultaneously trains more useful qualities than the ability to suffer in a plank position for extended periods.

Looking for new dryland programs for the Fall year, which includes plank and core progressions? Consider purchasing Dryland for Swimmers!

Written by Allan Phillips is a certified strength and conditioning specialist (CSCS) and owner of Pike Athletics. He is also an ASCA Level II coach and USA Triathlon coach. Allan is a co-author of the Troubleshooting System and was selected by Dr. Mullen as an assistant editor of the Swimming Science Research Review. He is currently pursuing a Doctorate in Physical Therapy at US Army-Baylor University.

Base Training for Swimming

Take Home Points on Base Training for Swimming:
  1. Different approaches exist for base training
  2. Traditional approaches have focused on building an aerobic base through
  3. Base training should be more individualized than uniform application of high yardage to an entire squad
As swimmers transition from summer training to fall training, many programs move from a
competition focus to base focus.  The term base training is often discussed but often has varied interpretations on the pool deck.  Traditionally, base training has marked a return to less intense and more aerobically based swim training after a summer of racing.  Though some would describe base replenishing the aerobic system after a period of shorter distance focus, optimal dosage is less clear, particularly in determining transfer to shorter events.

One of the most referenced studies in swimming (Costill 1991) found that adding a period of two-a-days for increased mileage in the early portion of a training cycle did not lead to significant short term improvements, but did result in significant improvement after a late season taper.  Was it the traditional base training that led to improvement or some other factors?  Wakayohsi (1993) found that six months of aerobic base training improved 4 x 400m swim test velocity, but its unclear if this training would have effectively transferred to shorter distance racing.  (additionally, this study was only eight male swimmers with no control group).  


Care must also be taken to accommodate swimmers entering base from different starting points.  On a single team you can have swimmers who competed all summer in national and international meets, those who did consistent but not intense training, those who cross trained, and those who barely did anything.  Each type of swimmer will require a different approach, no matter how emotionally invested a coach is in his/her one-size-fits-all program (and no matter how much they want to punish the lazy swimmers who didn’t train during the summer).   This is a key but often overlooked point of base. 

'The longer and more substantial is this basic form of training, the better and longer an athlete will be able to hold a peak performance capability when serious competitions occur. The corollary to this statement is: an athlete's ability to hold a peak performance status is directly proportional to the amount of base (preparatory or background) training that is done." (Rushall 1994)

Now, while most would agree with this statement, the HOW is less clear.  Some interpret this to mean base training should include record setting yardage with ample doses of 400-1000yd repeats.  Others may interpret “longer and substantial” to mean never take a break.  In truth, the varying interpretations of base training reflect the nature of base training as being grounded in as much art as science.  True, it’s possible to measure baseline fitness through time trials, lactate, VO2max, etc but deciding how to improve those parameters and what to do with that information is less well established. 

Conclusion

Though many definitions of base exist, we should all agree that base is about preparing for the next phase of training.  Base can also be seen as having dual purposes, from preparing for future competitions while actively recovering from prior hard training.  This may also support the idea of planned time off in which swimmers focus on non-swimming activities.  

“The basic preparatory phase can include activities drawn from sports which are related to swimming. This phase of training would also include the greatest amount of auxiliary training.  However, because such activities are beneficial for establishing a physiological base, does not mean that they are just as beneficial when highly specialized training is employed. At that time they have the potential to disrupt refined neuromuscular patterns associated with skill.” (Rushall 1994)

Ultimately, base should be seen as simply that: a base.  Determine what the athlete needs for late season success and build the foundation from the base phase.  

References

  1. Wakayoshi K1, Yoshida TIkuta YMutoh YMiyashita M.  Adaptations to six months of aerobic swim training. Changes in velocity, stroke rate, stroke length and blood lactate.   Int J Sports Med. 1993 Oct;14(7):368-72.
  2. Costill DL1, Thomas RRobergs RAPascoe DLambert CBarr SFink WJ.  Adaptations to swimming training: influence of training volume.  Med Sci Sports Exerc. 1991 Mar;23(3):371-7.
  3. Dr. Brent Rushall.  ANNUAL PLANNING FOR SWIMMING FITNESS.  Adapted from NSWIMMING COACHING SCIENCE BULLETIN: Volume 2 Number 6 - July-August, 1994.
Written by Allan Phillips is a certified strength and conditioning specialist (CSCS) and owner of Pike Athletics. He is also an ASCA Level II coach and USA Triathlon coach. Allan is a co-author of the Troubleshooting System and was selected by Dr. Mullen as an assistant editor of the Swimming Science Research Review. He is currently pursuing a Doctorate in Physical Therapy at US Army-Baylor University.

Adjusting to College Swimming

Take Home Points on Adjusting to College Swimming

    1. Managing stressors outside the pool is critical for an effective transition between age group and college swimming 
    2. Communication is key as swimmers adapt to new training programs 
    3. Sleep and nutrition are two areas that are common downfalls for swimmers making the transition to college
    The new school year marks a transition for swimmers across the country. An entire
    freshman class is not far from making their college swimming debuts. In this post, we’ll explore key issues in the transition from age group to college swimming.

    Sleep: Sleep has been a major topic on this site. (Sleep Restriction Impairs Performance, Does Extra Sleep Enhance Performance) Though early mornings are not unique to college, swimmers often walk a finer line with an adjustment to college life. The predictable rhythm of days filled with high school class and parental monitoring can give way to varied class schedules and curfew-less nightlife. Sleep also had recent attention in an NCAA report finding that swimmers had the highest use of sleep aids among college athletes. (Swimmers Biggest Users of Sleep Aids in NCAA

    Nutrition: Many programs have resources beyond what is offered in high school (athletic department nutritionists and athlete dining), but as with sleep, the onus is still largely on the swimmer to make good choices independently. (see Swimming Nutritional Program, Peri Workout Nutrition, Dr. Mougios interview, Dr. Rosenbloom interview, Dr Carvalho interview) In the same report cited above, college swimmers (especially females) were shown to have among the highest uses of nutritional supplements compared to other college athletes. 

    Training: Generally, swimmers will choose a program that is compatible with how their bodies historically respond to training. Kids with high yardage, lower intensity backgrounds will be more drawn to similar college programs. Likewise, kids with high intensity backgrounds may favor similar training at the college level. Still, despite recruiting overtures, not every match is perfect, leading some swimmers requiring more time for adjustment in the pool. Communication is key, as some coaches believe their "one-size-fits-all" program is beyond reproach, meaning that any poor performance is the swimmers fault in their eyes! 

    Little fish, big pond. For kids coming from nationally recognized clubs and who have major national and international meet experience, this is less of a shock having been in the water regularly with swimmers better than them. But for those in smaller programs and with more fragile mindsets, it can be a shock. Now, this reaction is perfectly normal and many swimmers do get more comfortable. Unfortunately though, many do not and fail to meet expectations. It is critical to see being surrounded by faster swimmers as an opportunity for growth, not a blow to the ego! 

    Travel: again, probably less adjustment for kids with national and international experience, but the frequency of out of state travel can be a new stressor, even for kids who have international experience. Finding yourself constantly on a bus or plane with school assignments looming is a different type of stress than big international trips during summer vacation. The frequent travel can also compound with other responsibilities, leading to…

    Academics, Social: It might seem odd to lump these two areas together, but both share the common theme of being non-swimming factors with the potential to heavily impact swimming. As with other factors, these too will depend on how the swimmer chooses to react to his/her new environment. History has shown that many swimmers can strike an effective balance, but it does take planning and the right mindset.

    Conclusion

    The transition to the collegiate level is an exciting challenge for all. NCAA swimming represents some of the fastest swimming on the planet. Freshmen can establish a foundation for a successful swimming career by entering school with right mindset and by knowing where the most critical challenges reside. 

    Written by Allan Phillips is a certified strength and conditioning specialist (CSCS) and owner of Pike Athletics. He is also an ASCA Level II coach and USA Triathlon coach. Allan is a co-author of the Troubleshooting System and was selected by Dr. Mullen as an assistant editor of the Swimming Science Research Review. He is currently pursuing a Doctorate in Physical Therapy at US Army-Baylor University.

    Burnout Among Swim Coaches

    Take Home Points on Burnout Among Swim Coaches
    • Burnout among coaches is a “brain drain” on the sport.
    • Athletes may suffer if coaches are burned out.
    • Understanding causes of burnout is critical for long term development and retention of coaches.
    Burnout is a common but unfortunate topic in the swimming community. (Why do Young
    Swimmers Burnout? and How to Prevent Swimming Burnout) Many swimmers hang up the goggles long before reaching their potential. Sometimes frustration due to injury discourages swimmers from pressing onward. Other times, burnout is purely mental, where a swimmer is fed up with staring at the black line and living by the strict rhythm of the pace clock. 

    Now, no one said swimming (or any sport) at a high level is easy, so attrition is a natural byproduct of rising through the ranks. But most would agree that burnout is far too common. Veterans of the sport all know several swimmers who left the pool early with unmet physical potential. 

    Burnout among swimmers is frequently discussed, but what about burnout among coaches? Coaching swimming can be a tough gig…long and irregular hours, lost weekends, external pressure (parents, institutional, athletes). As a result, many coaches leave the profession before reaching their potential as coaches. This topic is especially poignant with many coaches desperately looking forward to some rest and relaxation after summer season. 

    If a young coach leaves the sport due to burnout, many mentorship hours have been squandered in the process. Secondly, burnout is not sudden, and many coaches aren’t able to give their athletes their very best if they are on the road to burnout. Additionally, potential coaches may be discouraged from entering the field if they suspect burnout will occur, which can contribute to negative self-fulfilling cycles. 

    Though swim coach burnout has not been a hot topic in research-land, there is still much to learn from other sports that have been studied. A survey among Turkish judo coaches (Gencay 2011) revealed “moderate” levels of burnout among those studied. The point here is not to study judo, but instead to explore generally why do coaches burnout? 

    This study found that coaching experience and (lack of) satisfaction from administrators both factored into emotional exhaustion. Authors concluded, “Burnout appears to be a problematic issue for judo coaches. When coaches begin to feel emotionally depleted, they distance themselves from athletes, and experience a reduced sense of meaning about their work; it is likely to affect the quality of the athletic experience for both the coach and the athletes.”

    Malinouskas (2010) found similar correlations among university coaches, with experience greater than 10 years being related to burnout, though gender was not related to burnout. Yet burnout has many dimensions beyond strictly mental depletion. Tashman (2010) studied coaches from multiple sports and found that maladaptive perfectionism (as contrasted with adaptive perfectionism) was linked to burnout.

    Additional research from the world of athletic training also can offer insight. Though athletic training is a completely different field than coaching, the job stresses are very similar: long irregular hours, pressure to perform, low to moderate pay relative to time worked. 

    “No matter their marital or family status, ATs employed at the Division I-A level experienced difficulties balancing their work and home lives. Sources of conflict primarily stemmed from the consuming nature of the profession, travel, inflexible work schedules, and lack of full-time staff members.” (Mazerolle 2008)

    Some of these factors are inherent for any job at high levels of sport. Travel and long hours are unavoidable, but other stressors can be managed. One similar theme that emerges is the role of leadership. In the coaching context, head coaches and administrators can shape the future of assistant coaches. 

    While there is certainly a balance to be had between being too tough and too lax, leaders in the field must recognize the influence they have on their subordinates. “The foundation for a successful work environment in the NCAA Division I clinical setting potentially can center on the management style of the supervisor, especially one who promotes teamwork among his or her staff members. Although a family-friendly work environment is necessary for work-life balance, each member of the athletic training staff must have personal strategies in place to fully achieve a balance.” (Mazerolle 2013)

    Conclusion

    Despite the dark and gloomy tone of this article, most would agree that more viable opportunities exist in the coaching field than in the past. Performance levels among young swimmers continue to elevate, in part due to more free access to knowledge for young coaches. But the sport can always do better in cultivating young coaching talent. Understanding what potentially drives some coaching prospects out of the field is one step in the right direction. 

    References

    1. Gencay S1, Gencay OA. Burnout among judo coaches in Turkey. J Occup Health. 2011;53(5):365-70. Epub 2011 Jul 20.
    2. Malinauskas R1, Malinauskiene V, Dumciene A. Burnout and perceived stress among university coaches in Lithuania. J Occup Health. 2010;52(5):302-7. Epub 2010 Aug 6.
    3. Tashman LS1, Tenenbaum G, Eklund R. The effect of perceived stress on the relationship between perfectionism and burnout in coaches. Anxiety Stress Coping. 2010;23(2):195-212. doi: 10.1080/10615800802629922.
    4. Mazerolle SM1, Bruening JE, Casa DJ. Work-family conflict, part I: Antecedents of work-family conflict in national collegiate athletic association division I-A certified athletic trainers. J Athl Train. 2008 Sep-Oct;43(5):505-12. doi: 10.4085/1062-6050-43.5.505.
    5. Mazerolle SM1, Goodman A. Fulfillment of work-life balance from the organizational perspective: a case study. J Athl Train. 2013 Sep-Oct;48(5):668-77. doi: 10.4085/1062-6050-48.3.24.
    Written by Allan Phillips is a certified strength and conditioning specialist (CSCS) and owner of Pike Athletics. He is also an ASCA Level II coach and USA Triathlon coach. Allan is a co-author of the Troubleshooting System and was selected by Dr. Mullen as an assistant editor of the Swimming Science Research Review. He is currently pursuing a Doctorate in Physical Therapy at US Army-Baylor University.